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ABSTRACT

High-throughput cell proliferation assays to quan-
tify drug-response are becoming increasingly com-
mon and powerful with the emergence of improved
automation and multi-time point analysis methods.
However, pipelines for analysis of these datasets
that provide reproducible, efficient, and interactive
visualization and interpretation are sorely lacking.
To address this need, we introduce Thunor, an
open-source software platform to manage, analyze,
and visualize large, dose-dependent cell prolifera-
tion datasets. Thunor supports both end-point and
time-based proliferation assays as input. It provides
a simple, user-friendly interface with interactive plots
and publication-quality images of cell proliferation
time courses, dose–response curves, and derived
dose–response metrics, e.g. IC50, including across
datasets or grouped by tags. Tags are categorical la-
bels for cell lines and drugs, used for aggregation,
visualization and statistical analysis, e.g. cell line
mutation or drug class/target pathway. A graphical
plate map tool is included to facilitate plate annota-
tion with cell lines, drugs and concentrations upon
data upload. Datasets can be shared with other users
via point-and-click access control. We demonstrate
the utility of Thunor to examine and gain insight
from two large drug response datasets: a large, pub-
licly available cell viability database and an in-house,
high-throughput proliferation rate dataset. Thunor is
available from www.thunor.net.

GRAPHICAL ABSTRACT

INTRODUCTION

Understanding the effect of drugs and other perturbagens
on cell proliferation has relevance to several fields in
biomedicine, most notably in cancer (1,2). Human cell lines
provide a widely available, relatively standardized, and scal-
able in vitro system in which such effects can be quanti-
fied and compared (3). High throughput screening (HTS)
is a framework in which cells can be imaged and counted
at scale, across multiple cell lines, drugs and doses using
large, robotically automated facilities and more recently us-
ing all-in-one incubator and cell imaging devices, e.g. In-
cuCyte S3 (Essen Bioscience Inc., Ann Arbor, MI, USA).
In these studies, in vitro drug response is traditionally quan-
tified in terms of cell viability, i.e. the cell count at a partic-
ular time point (usually 72 h) post drug addition as a frac-
tion of control (unperturbed) cells (4). Recently, we (5) and
others (6) introduced novel drug-effect metrics based on cel-
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lular proliferation rates. These rate-based metrics avoid bi-
ases inherent in traditional viability assays, which can pro-
duce misleading interpretations, e.g. of cell line sensitivity
to drug (5). While estimating proliferation rates is more de-
manding than performing traditional end-point assays, new
automated systems (including the IncuCyte) have greatly re-
duced this burden. Therefore, for both end-point and time-
based measurements, the primary challenge is no longer
data generation but rather dataset management, analysis
and visualization at scale. Unfortunately, these tasks often
involve a cumbersome and error-prone workflow involving
processing of multiple instrument-exported file types, man-
ual aggregation of spreadsheets, and analyses using (often
costly) commercial software packages or custom code writ-
ten in languages such as Matlab, R or Python, which re-
quire time and computational skill to set up. Existing graph-
ical software is often either specific to certain end-point
only datasets (7,8) or lacks tools for annotating, storing and
sharing datasets as well as interactive, multi-dataset visual-
ization and statistics (9).

In this manuscript, we introduce Thunor (THOO-nor),
a free software platform to address the challenges of ana-
lyzing and visualizing end-point and time-course cell pro-
liferation datasets. We provide a description of the software
and its web interface, inputs, and key features. We demon-
strate the utility of Thunor with two case studies. First, we
explore relationships between cell line drug sensitivity, drug
pathway/molecular target, and tissue site of origin in the
publicly-available GDSC dataset (10) (we focus on its dose-
response data and molecular annotations, while integration
of -omics datasets is planned for a future version). Then,
we demonstrate the use of proliferation rate-based data us-
ing an in-house, high-throughput proliferation rate screen,
and show how Thunor can help check for common qual-
ity control issues and explore these data interactively. We
then provide a brief discussion––methods and software im-
plementation are described at the end. Due to significant
computational demands and the often proprietary nature
of dose-response data, Thunor is a self-hosted platform de-
signed for in-house use, rather than a centralized web ser-
vice. Thunor can be used with a web interface (Thunor Web)
or as a Python library (Thunor Core), facilitating collab-
oration between programmers and non-programmers. The
Thunor software, documentation, and a read-only demon-
stration instance are available at www.thunor.net. A Thunor
Web tutorial is available at docs.thunor.net/tutorial.

RESULTS

Software and web server description

Thunor is an open-source software platform that solves
the storage, sharing, analysis, and visualization challenges
of large-scale in vitro drug response datasets––both end-
point viability and cell proliferation time courses. The drug-
induced proliferation rate (DIP rate) (5) is a quantita-
tive metric of cell proliferation calculated from time-course
data; a set of values obtained from different drug concen-
trations can be fit by models of dose–response relationships
and analyzed in an analogous manner to viability. To our
knowledge, Thunor is the only tool that provides an inter-
active graphical interface for both types of data, combined

with a database, group-based dataset sharing, and graphical
annotation tools. A comparison to related software is pro-
vided in Supplementary Text S2 and Supplementary Table
S1.

Thunor’s central features include a web interface drag-
and-drop file upload with automatic dose–response metric
calculation; a powerful, multi-paneled, interactive plot sys-
tem with statistical analyses, inter-dataset comparisons, and
a ‘tag’ system which allows aggregation of drug and cell
lines by categorical features of interest (e.g. drug molecu-
lar target, cell line phenotype, cell line tissue of origin) for
rapid, interactive, code-free analysis of large datasets (Fig-
ure 1). Visualizations can be used for both quality control
checks and analyses, and include automatic statistical tests
where appropriate. Datasets and tags can be easily shared
with other users by point-and-click.

Thunor is split into a core Python library for anal-
ysis and visualization (Thunor Core) and a web appli-
cation (Thunor Web). Thunor Core performs DIP rate
calculation, curve fitting, and visualization capabilities. It
can be used with Jupyter Notebooks (jupyter.org) and
the wider Python ecosystem, enabling documented, repro-
ducible analysis workflows to be archived and extended
as needed. The Thunor Web interface accepts user data
(cell count data; end-point or time-course), processes it into
viability scores, DIP rates, and dose–response curves and
their derived metrics using Thunor Core, and stores it in a
database. These data can then be shared with other users,
annotated with tags for aggregated analysis and statistics,
and viewed and interrogated interactively (Figure 2). In the
plot system, the page URL automatically updates to re-
flect the open plots, facilitating saved sessions (via a browser
bookmark) and sharing sets of plots with a colleague.

Inputs

Thunor accepts cell count data in tab-separated value
(TSV), HDF5, or IncuCyte Zoom (Essen Bioscience Inc.,
Ann Arbor, MI, USA) file formats from fluorescence-based
or cell segmentation and counting platforms. Each contains
a plate identifier, well identifier, cell count, and time point.
The TSV format can be annotated (wells are already labeled
with cell line name, drug name, and drug concentration) or
unannotated. See Supplementary Text S1 for further details.

For unannotated cell count data, the dataset can be anno-
tated using a graphical plate map layout tool (Supplemen-
tary Figure S2), or by uploading the annotation data in TSV
or Javascript Object Notation (JSON) formats. The plate
map layout tool can also export layouts in these formats for
reuse on new datasets.

Tags are categorical data applied to cell lines or drugs,
such as cell line tissue of origin, or drug class/molecular
target. Tags can be uploaded as a TSV with columns
‘tag name’, ‘tag category’ and either ‘drug’ or ‘cell line’ for
drug/cell line tags respectively. Tags can also be entered and
edited using Thunor Web’s graphical tag interface (Supple-
mentary Figure S3).

Availability and documentation

Thunor Core and Thunor Web are freely available under
the GNU General Public License version 3.0. An online,

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkab424/6285265 by guest on 14 June 2021

file:www.thunor.net
https://docs.thunor.net/tutorial
https://jupyter.org


Nucleic Acids Research, 2021 3

Figure 1. Thunor Web user workflow. Thunor accepts cell count data from end-point or time course experiments on microtiter (multi-well) plates. Layout
data (describing cell line, drug and drug concentration metadata) can be included or entered using a graphical interface. Data are automatically processed
on upload and stored in a database, where they can be shared with other users, labeled with categorical tags for analysis, or explored using an interactive
plot interface.

open access, read-only demo of Thunor Web is available
at demo.thunor.net, which has been preloaded with the the
case study datasets from this manuscript. A chat room pro-
vides an option to ask questions not addressed in the docu-
mentation and to contact the authors. These resources are
all linked from the Thunor website, thunor.net.

Case study: genomics of drug sensitivity in cancer

The Genomics of Drug Sensitivity in Cancer (GDSC) (1)
is a large dataset of cell viability and drug dose–response
relationships. As an example of the utility of Thunor, we

sought to identify drugs targeting cellular processes and
pathways that have an outsized effect on collections of cell
lines, grouped by their primary site/tissue of origin. Tra-
ditional analysis would either examine cell lines and drugs
individually, or require custom code to group the data for
analysis (10). Thunor enables these analyses from the graph-
ical web interface.

Version 17a of the GDSC dataset (1) was downloaded
and converted for use with Thunor HDF5 format (script
included with Thunor Core; see Methods). The converted
dataset includes 72 h luminescence-based cell viability as-
says for 1074 cell lines and 250 drugs over nine concentra-
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Figure 2. Thunor interactive plot interface. 1. Multi-column layout op-
tion. 2. Multi-dataset plot option. 3. Plot toolbar. 4. Download plot images
(SVG, PNG) or data (CSV, JSON). 5. Proliferation time course. 6. Auto-
matic DIP rate delay detection. 7. Click to show/hide plot traces. 8. Change
plot panel. 9. Flexible data selection and aggregation; by cell line, drug, or
user-defined “tags.” 10. Zoom, pan, and rescale axes. 11. Hover mouse (tap
on touch devices) to view underlying data. 12. Comparison of two parame-
ters (e.g. IC50 versus EC50), or one parameter across two datasets. 13. Built
in statistical tests. 14. Box plot showing aggregation of cell lines.

tions. Annotation details, including cell lines’ primary site
(tissue of origin) and drugs’ molecular targets and path-
ways, were similarly obtained, converted into a TSV file and
loaded as Thunor tags.

Our GDSC analysis is summarized in Figure 3. We
examined a subset of cell lines from four primary sites
(lung, breast, skin and aerodigestive tract; epithelial tissues
known to be regulated by epidermal growth factor receptor
(EGFR) family members (11)) for their sensitivity to drugs
annotated by any of six cellular processes and pathways
relevant to cancer (apoptosis regulation, cell cycle, EGFR
signaling, ERK MAPK signaling, PI3K/MTOR signaling,
and RTK signaling) using the activity area metric––the area
above the dose response curve that increases with both drug
efficacy and potency (Figure 3A). As a group, cell lines from
the aerodigestive tract had greater activity areas in response
to inhibitors of EGFR signaling (Figure 3B) and the drug
afatinib appears to be driving the differences between cell
lines from skin and the aerodigestive tract (Figure 3C) and
is further confirmed when examining the activity areas ob-
tained from individual cell lines which identified TE-4, an
aerodigestive tract cell line, as the cell line with the great-

Figure 3. Thunor-generated plots for GDSC viability data. (A) Compari-
son of drug sensitivities between cell lines of tumors from different primary
sites (lung, breast, aerodigestive tract (aerodig), and skin and treated with
drugs of various classes, indicated by colors. The number of cell lines and
drugs within each group are shown in parentheses and. Drug response is
quantified by observed activity area (Activity area observed) and plotted
as boxplots. (B) Only the data from (A) of EGFR-family-specific drugs are
shown. (C) Only the skin and aerodigestive tract cell lines from (B) with re-
sponses to the individual drugs in the EGFR tag are shown. (D) Bar plot
of sensitivity (AA observed) of cell lines from skin and aerodigestive tract
cancers to EGFR-family-specific drugs. Colors correspond to cell line tags.
Most sensitive cell lines have been expanded for easier visualization in the
plot on right. (E) Dose–response curves of TE4 cells response to EGFR,
ERBB2, and dual-targeting drugs respectively.

est response to afatinib (Figure 3D). Afatinib and gefitinib,
drugs that alter the activity of both EGFR and the related
ERBB2, resulted in dose–response curves with relatively
greater potency and efficacy compared to the other EGFR
inhibitors (EGFRi) when applied to the TE-4 cell line (Fig-
ure 3E). Investigation of the genetic alterations of TE-4 pro-
vided by the Broad Institute (12) uncovered genomic am-
plifications of both EGFR and ERBB2 (6 and 14 copies,
respectively), suggesting a mechanism for its enhanced sen-
sitivity. This analysis demonstrates how Thunor can be used
to navigate a large dataset and focus down into a specific line
of enquiry by following the data. Each plot can be produced
in a matter of seconds, which enables rapid exploration of
datasets with no programming needed.

Case Study: In-house cell proliferation dataset

The use of time-dependent measurements of cell prolifera-
tion instead of end-point viability can mitigate experimental
biases found in the latter and has been shown to relate drug-
response to cell phenotype (5,13). Here, we demonstrate
that Thunor can examine these data for common quality
control issues and can visualize and analyze these data with
the same ease as end-point data.

The HTS007 dataset contains a panel of eight breast can-
cer cell lines treated with 27 drugs at multiple concentra-
tions generated in the High Throughput Screening Core
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Figure 4. Thunor-generated plots for high-throughput time-course dataset
HTS007. (A) DMSO control drug-induced proliferation (DIP) rates by
plate, showing cell line growth reproducibility. (B) DIP rate by well (blue is
negative growth, orange is positive, gray is no data). (C) MCF10A cell line
relative DIP rates for four drugs. One of each color pair of lines shows data
for MCF10A cultured at Vanderbilt (-VU); the other from cells cultured at
Harvard Medical School (-HMS). (D) Cell proliferation time course (dot-
ted lines) with DIP rate fit (solid lines) for each concentration replicated
twice. The interactive interface allows trace hiding for added clarity. (E)
Dose–response curve for MCF10A-VU cells in abemaciclib. Black dots
show proliferation rate without drug (concentration for graphing purposes
is set relative to lowest tested dose). Red dots show experimental replicates.
Solid line shows model fit. (F) Potency (IC50) versus efficacy (maximum
effect observed) for entire dataset, colored by cell line. + symbol indicates
potency estimate truncated at edge of observed concentration range.

of Vanderbilt University. Cell proliferation was quantified
over 5 days. The dataset was uploaded to Thunor Web for
analysis and visualization (Figure 4). Thunor Web calcu-
lates the DIP rate and dose–response curves automatically,
but it is useful to perform quality control (QC) checks to
look for common experimental anomalies before proceed-
ing. HTS007 used two plates for each cell line, thus we can
check the reproducibility of cell growth rates in undrugged
conditions across replicate plates for each cell line (Fig-
ure 4A). We can also determine whether any spatial bias
exists across the plate by visualizing the proliferation rate
of each well overlaid onto the plate layout (Figure 4B). This
helps to identify, for example, if drugs were misapplied or
the presence of ‘edge effects.’

The HTS007 dataset contains two variants of the
MCF10A cell line––one modified to express histone 2B con-
jugated to monomeric red fluorescent protein (H2B-mRFP)
at Vanderbilt University (MCF10A-VU) and one express-
ing mCherry-conjugated H2B (H2B-mCherry) at Harvard

Medical School (MCF10A-HMS). Data generation to eval-
uate the dose-dependent effects of drugs on cell prolif-
eration rates was performed at Vanderbilt in both cases.
The dose–response characteristics of the two cell line vari-
ants demonstrates high reproducibility, with similar dose–
response curves obtained from four selected drugs (abe-
maciclib, ceritinib, doxorubicin, etoposide) (Figure 4C). We
confirmed that the dose–response curves are representative
of the underlying cell growth characteristics at the vari-
ous drug concentrations by visualizing the cell prolifera-
tion data (dash-dotted lines) and calculated DIP rate (solid
lines, where the gradient is the DIP rate) for MCF10A-
VU in abemaciclib at each concentration and well repli-
cate (Figure 4D). This view is useful for checking that any
delay in drug response is correctly detected by the auto-
mated algorithm and the DIP rate quality of fit. Traces can
be toggled on and off for clarity, where many concentra-
tions are present. The DIP rate can also be viewed over-
laid on the dose–response curve (Figure 4E), where each
data point shows the DIP rate for each well replicate (cor-
responding to the gradients in Figure 4D). Black dots show
undrugged/control data points, where the x-axis value is set
one order or magnitude below the lowest measured dose due
to the log scale. Thus, the quality of dose–response curves
fits can be examined individually based on underlying data.
Finally, as an example dataset-wide visualization, we show
the maximum drug effect observed (efficacy) versus the IC50
(potency) for all cell line/drug combinations in the dataset,
colored by cell line (Figure 4F). This shows how multiple
metrics can be compared in Thunor; for example, one may
wish to screen for drugs which are highly efficacious and po-
tent. These plots are all interactive; one can hover the cursor
(or tap on touch devices) to see information on data points
and traces. Plots can be easily refined and altered in the in-
teractive interface in a few seconds.

DISCUSSION

High-throughput in vitro screens of large panels of chemical
compounds against hundreds to thousands of cultured cell
lines is a powerful and increasingly popular tool for prob-
ing complex intracellular networks and identifying drug-
gable targets in hypothesis-driven biomedical research (14).
There is a need for easy-to-use tools to rapid explore large
cell proliferation datasets, including public datasets of end-
point measurements and time-series cell count data, which
are being generated in significant volumes by ourselves and
other groups.

Although end-point data currently predominate over
time-series data, a major Thunor feature is its ability to visu-
alize and interpret both data types. We have been assessing
the effects of drugs on cell proliferation over time for sev-
eral years (5,15,16) and have promoted the use of the drug-
induced proliferation (DIP) rate as a metric of drug effect
(5). Another group has also promoted a rate-based metric of
drug effect, the growth rate (GR; (6)), which utilizes a sim-
ilar quantification approach. Although there is a GR web
interface, GRcalculator (9), it lacks a database for storing
and sharing datasets with granular permissions, does not
have the variety of plot types available with Thunor, and
lacks the ability to add and analyze additional annotation as
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with Thunor’s tagging system. Few other software packages
have the ability to utilize time-series cell proliferation data.
We provide an extended comparison of Thunor with this
and other software in the supplementary information (Text
S2, Supplementary Table S1), but we believe Thunor adds
significant value over the alternatives. Its interactive nature
facilitates rapid exploration of any size dataset, and allows
follow-up questions and hypotheses to be formed and inves-
tigated with a few clicks.

We anticipate that Thunor will stimulate collaboration
between researchers, ease the exchange of drug-response
data, and improve analysis reproducibility and trans-
parency. Thunor is an active project and we encourage in-
put and contributions from the research community. Ex-
tensions under consideration include drug combination re-
sponse modeling, additional statistical analyses, improved
quality control checks on data upload, integration of -omics
datasets (e.g. RNA-seq) to explore molecular correlates of
drug sensitivity, and alternative metrics of drug response
(e.g., GR, cell death kinetics) (6,17).

METHODS AND IMPLEMENTATION

HTS007 dataset

The HTS007 dataset (Data file S2) contains a panel of eight
breast cancer cell lines treated with 27 drugs at multiple con-
centrations (4-fold dilutions). Each cell line was modified to
express fluorescent histone 2B (H2BmRFP) to enable detec-
tion of nuclei via fluorescence microscopy. Cells were im-
aged by automated fluorescence microscopy approximately
every four hours over five days in the Vanderbilt University
High Throughput Screening Core. Nuclei were quantified
by automatic image segmentation. The dataset is included
in the online demo (demo.thunor.net).

DIP rate calculation

The DIP rate is defined (5) as the gradient of the log2 cell
count over time, after any initial stabilization period. The
stabilization period is determined by iteratively excluding
more time points from the beginning of the time course,
evaluating goodness of fit at each step using linear regres-
sion, the root-mean-square error (RMSE) and adjusted
R squared (ARSQ) are calculated. The final time point set
is selected as follows:

arg max
m∈1..(N−1)

m ARSQ(X) · (1 − RMSE(X))2 · (n − 3)0.25

where X is the model fit, N is the number of time points
available for the well, m is the index of first time point used
for the fit, n = N − m + 1 is the number of time points used
for the DIP fit on the current iteration, and fit is a linear re-
gression fit to the data points m..N. A minimum of two time
points is required for a DIP rate fit (five or more is strongly
recommended). When exactly two time points are present,
the iterative procedure is skipped and the linear regression
fit is used.

Viability calculation

For viability calculations on multi-time point datasets, the
closest time point to 72 h is used. In the Thunor plot in-

terface, the time point used can be verified by hovering the
cursor over a viability data point in a dose–response curve.
Viability is calculated as the ratio of the cell count in a well
to the mean of the matched control wells’ cell counts at the
same time point. Control wells are defined as wells on the
same plate, using the same cell line, but with no drugs added
to the well.

Dose–response curves

Dose–response curves are fitted using a log-logistic function
with three (viability) or four (DIP rate) parameters,

f (X, b, c, d, e) = c + d − c
1 + eb(ln X−ln e)

.

where X is a vector of concentration values and b (Hill
slope), c (Emax), d (E0) and e (EC50) are fit parameters. In
the three-parameter case, d is set to 1 because viability is
relative to control, i.e., the effect at zero drug concentration
is, by definition, the control viability. The curve fitting is per-
formed using the curve fit function in SciPy (scipy.org).
Initial values for the fit parameters are estimated from the
data using the same approach as the four-parameter log-
logistic (LL.4) function in the drc R package (18).

In the DIP rate case, the curve fit function selects a
least squares fit using the Levenberg-Marquadt algorithm
(19). The fit residuals are defined as

R = Y − f (X, P),

where Y is a vector of response values (i.e. DIP rate), X is a
vector of drug concentrations, P is the set of fit parameters,
and f is the log-logistic fit function defined previously. The
standard error of DIP rate data points is incorporated into
the fit by minimizing

χ2 =
∑
r∈R

( r
σ

)2
,

where � is the standard error of a response value. Both con-
trol and experiment DIP rate values are used in the curve
fit. Since the fit takes place in log2(concentration) space, a
non-zero dose must be assigned to controls (log (0) is unde-
fined). We set the concentration of controls to ten-fold less
than the lowest concentration in X. The curve fit is replaced
with a “no effect” model (shown as a horizontal dashed line
in plots) if the dose–response curve is not significantly dif-
ferent from that no effect model (F-test, p<0.05). The fit is
rejected (no dose–response curve shown) if any of the fol-
lowing occur: a numerical error occurs in the curve fit
function, the fit EC50 is less than the minimum concentra-
tion observed, or the fit E0 is greater than the mean plus one
standard deviation of the control data points’ DIP rate val-
ues (where at least five control data points are used in the fit)
or greater than 1.2 × the mean of the control data points’
DIP rates (otherwise).

In the viability case, the sum-of-squared-residuals R is
minimized directly. Dose–response curves are fitted with
parameter constraints by the Trust Region Reflective algo-
rithm (20). The parameter constraints are that Hill slope b
must be positive, and Emax must be between 0 and 1 since
viability cannot be negative.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkab424/6285265 by guest on 14 June 2021

https://demo.thunor.net
https://scipy.org


Nucleic Acids Research, 2021 7

The calculation of derived dose–response curve param-
eters like IC50 and activity area, and the available statisti-
cal analysis for different plot types, are covered in Supple-
mentary Text S1. The difference between activity area based
on the dose–response curve and activity area ‘observed’ is
shown in Supplementary Figure S4.

Thunor implementation

Thunor Core is a Python library, which provides core
functionality, including structuring dose–response data and
curve fit parameters using the Pandas library, automati-
cally calculating DIP rate, fitting dose–response curve mod-
els, and plotting. Thunor Core can be used standalone, in-
tegrated into other processing pipelines, or utilized within
Jupyter notebooks (jupyter.org), as shown in the Thunor
Core online tutorial (part of the Thunor Core documenta-
tion, core.thunor.net). Thunor Web is built on Thunor Core,
and is also written in Python using the Django web frame-
work. It is deployed using Docker Compose, together with a
PostgreSQL database, Redis database and nginx web server.
A script is included for easy deployment. An extended de-
scription of the software implementation and links to soft-
ware dependencies are given in Supplementary Text S1; the
architecture is shown in Supplementary Figure S1.

Software installation and tutorial

Thunor Core is available from the Python Package In-
dex (PyPI) with the command pip install thunor. It
supports Python ≥3.6.

Thunor Web is installed using Git (git-scm.com) and
Docker Compose (docs.docker.com/compose). For conve-
nience, a Python script is provided which automates the de-
ployment process, including database initialization, creating
an admin user, and adding transport layer security (TLS)
encrypted connections, if desired, using Certbot (certbot.
eff.org). Installation instructions are provided in Supple-
mentary Text S3. An online tutorial is available at docs.
thunor.net/tutorial.

Both tools are compatible with Windows, Mac, and
Linux. Smaller datasets (e.g., HTS007) require minimal re-
sources; however for larger datasets like GDSC, a modern
processor and 16GB RAM or more are recommended.

GDSC and CTRP format conversion

The GDSC dataset v17a (10) was converted using a script
included with Thunor Core. Instructions are given in Sup-
plementary Text S4, where we also describe how to use the
included conversion script for the Cancer Therapeutics Re-
sponse Portal (CTRP) v2.0 dataset (2).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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